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Soundscape analyses provide an integrative approach to studying the presence and
complexity of sounds within long-term acoustic data sets. Acoustic metrics (AMs) have
been used extensively to describe terrestrial habitats but have had mixed success in
the marine environment. Novel approaches are needed to be able to deal with the
added noise and complexity of these underwater systems. Here we further develop a
promising approach that applies AM with supervised machine learning to understanding
the presence and species richness (SR) of baleen whales at two sites, on the shelf
and the slope edge, in the western North Atlantic Ocean. SR at both sites was low
with only rare instances of more than two species (out of six species acoustically
detected at the shelf and five at the slope) vocally detected at any given time. Random
forest classification models were trained on 1-min clips across both data sets. Model
outputs had high accuracy (>0.85) for detecting all species’ absence in both sites and
determining species presence for fin and humpback whales on the shelf site (>0.80)
and fin and right whales on the slope site (>0.85). The metrics that contributed the
most to species classification were those that summarized acoustic activity (intensity)
and complexity in different frequency bands. Lastly, the trained model was run on
a full 12 months of acoustic data from on the shelf site and compared with our
standard acoustic detection software and manual verification outputs. Although the
model performed poorly at the 1-min clip resolution for some species, it performed
well compared to our standard detection software approaches when presence was
evaluated at the daily level, suggesting that it does well at a coarser level (daily and
monthly). The model provided a promising complement to current methodologies by
demonstrating a good prediction of species absence in multiple habitats, species
presence for certain species/habitat combinations, and provides higher resolution
presence information for most species/habitat combinations compared to that of our
standard detection software.

Keywords: acoustic metrics, soundscapes, baleen whales, random forest classification model, species richness

Frontiers in Marine Science | www.frontiersin.org 1 October 2021 | Volume 8 | Article 749802

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.749802
http://creativecommons.org/licenses/by/4.0/
mailto:sofie.vanparijs@noaa.gov
https://doi.org/10.3389/fmars.2021.749802
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.749802&domain=pdf&date_stamp=2021-10-22
https://www.frontiersin.org/articles/10.3389/fmars.2021.749802/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-749802 October 18, 2021 Time: 16:16 # 2

Pegg et al. Acoustic Metrics Baleen Whale Presence

INTRODUCTION

Soundscapes comprise the complex variety of biological,
anthropogenic, and environmental sounds of a given habitat
(Krause, 2008; Pijanowski et al., 2011). They provide a unique
perspective into a given ecosystem, whether terrestrial or marine,
due to the integrative approach of studying all sounds of
an environment together (e.g., Farina, 2013). However, recent
capacity increases in long-term acoustic data collection are
challenging scientists to develop new and creative ways to analyze
these complex data (e.g., Gibb et al., 2019). Extracting variability
in patterns and measuring diversity in these data frequently
requires taking a number of approaches. McKenna et al.
(submitted to this research topic) define soundscape analyses as
viewing a question through different lenses by dividing them
into biodiversity assessments, human impacts, and the acoustic
scene analysis, with each view requiring different approaches and
metrics. Which analyses or metrics are most appropriate depends
on the “lens” with which one is interested in interpreting the data.
Various approaches for analyzing soundscape data range from
long-term ambient sound measurements, observing variation in
sound pressure levels, and using individual or a combination of
acoustic metrics (AMs) (e.g., Sueur et al., 2014; Kaplan et al., 2015;
Haver et al., 2018; Bradfer-Lawrence et al., 2019).

Acoustic metrics refer to a number of standardized and
automated metrics that can comprise acoustic diversity indices
such as Acoustic Complexity Index, entropy, evenness, and
roughness (e.g., Sueur et al., 2014; Bradfer-Lawrence et al.,
2019; Farina et al., 2021), as well as specific metrics on the
spectral and temporal patterns of the soundscapes such as the
spectral integral, the envelope median, and background noise
proportion (Boelman et al., 2007; Depraetere et al., 2012; Towsey,
2017). AM can be used singly or in tandem to aggregate
complex information from acoustic recordings into a single
value. Terrestrial soundscape analyses have applied the use of
some AM successfully as proxies for estimating biodiversity (e.g.,
Sueur et al., 2008), community composition (e.g., Farina et al.,
2011), habitat type and vegetation (e.g., Do Nascimento et al.,
2020), and ecological condition (e.g., Tucker et al., 2014). Given
the success of AM for understanding terrestrial soundscapes,
these same AM were applied to the marine environment (e.g.,
Pieretti et al., 2017; Bohnenstiehl et al., 2018). However, direct
application of these approaches to the marine environment have
generally not been as successful due to the frequent overlap
in frequency bands of biological sounds and background noise
that are present, often leading to a lack of a clear relationship
between biodiversity and acoustic indices (Mooney et al., 2020).
One popular metric, the Acoustic Complexity Index, showed
mixed results in describing patterns in the sound assemblages
on coral reefs (Mooney et al., 2020). Acoustic indices also
were not able to predict bioacoustic activity due to overlap
with snapping shrimp and other anthropogenic sounds (Buxton
et al., 2018). However, these studies focused on highly complex
reef environments. When focusing only on low-frequency data
(<125 Hz), Parks et al. (2014) successfully used a single acoustic
entropy index to characterize baleen whale calls. Based on these
mixed applications of AM there is a need for further developing

approaches that can cope better with the heightened prevalence of
overlapping sound sources in the marine environment. Solutions
could include developing new indices specifically for the marine
environment (Parks et al., 2014), using other methods to support
assessments like clustering (Mooney et al., 2020), or combining
AM in novel ways. Recently, an approach using a number of
AM in combination with supervised learning algorithms was
successfully used to classify species richness (SR) levels and
species identities of marine mammal acoustic communities in
the Southern Ocean (Roca and Van Opzeeland, 2019). Here, we
evaluate whether this AM analysis approach might be helpful to
understanding other marine mammal communities.

Seven baleen whale species are found in the western North
Atlantic Ocean, where their distributions often overlap in
space and time. These include the North Atlantic right whale
(NARW; Eubalaena glacialis), Brydes’ (Balaenoptera edeni), blue
(Balaenoptera musculus), fin (Balaenoptera physalus), minke
(Balaenoptera acutorostrata), sei (Balaenoptera borealis), and
humpback whales (Megaptera novaeangliae). Recently, a decade-
long dataset was analyzed using a low-frequency detection and
classification system (LFDCS) with species-specific call libraries
(Baumgartner and Mussoline, 2011), highlighting North Atlantic
right whale year-round use of western North Atlantic Ocean
habitat (Davis et al., 2017). In addition, blue, fin, humpback,
and sei whales also exhibited wide habitat use in this area,
especially in winter when all species were detected throughout
the entire data collection range, from the Caribbean to the
Greenland Sea (Davis et al., 2020). Minke whale acoustic daily
presence was previously described using a different automated
acoustic detector, showing seasonal variability and migratory
movement throughout the western North Atlantic Ocean (Risch
et al., 2014). Bryde’s whales have been acoustically detected in
the southern Caribbean (Oleson et al., 2003), but were not
included in this study as their range does not typically include the
region of the western North Atlantic where most of our acoustic
monitoring efforts occur.

While the use and development of species-specific automated
detectors are important for bioacoustic analyses, manually
reviewing detector output can still be time consuming. Areas
of species overlap within baleen whale feeding and migratory
routes provide potential sites for methods, like AM, to be useful
to gain more knowledge of the acoustic environments and
marine mammal community composition in a faster and more
streamlined manner. AM can also be applied across different
datasets (Roca and Van Opzeeland, 2019), which is necessary
when using a wide range of data aimed at understanding baleen
whale presence across the western North Atlantic Ocean.

Baleen whales vary in their utilization of shelf, slope, and
pelagic habitats throughout their range. In the western North
Atlantic Ocean, some species, such as blue whales, have a
predominantly pelagic distribution, but can be found seasonally
in regions on the continental shelf (e.g., Lesage et al., 2017; Davis
et al., 2020). Fin whales occur year-round in on-shelf areas, like
Massachusetts Bay (Morano et al., 2012), but also in offshore
waters near the Mid-Atlantic ridge (Nieukirk et al., 2012). In
contrast, NARWs are generally found in coastal, on-shelf waters
(Davis et al., 2017), and can be distributed very close to shore.
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Due to this species variation in habitat usage, it is important to
see how AM perform across different environments.

Previously, success was found in using a suite of AM to
characterize the marine mammal community composition in
the Southern Ocean with a combination of Balaenopterid,
Physeterid, Delphinid, and Phocid species comprising the
acoustic assemblages (Roca and Van Opzeeland, 2019). Here, we
evaluate if a similar combination of AM and supervised machine
learning could help determine the acoustic presence of individual
species and SR levels specifically of baleen whales in the western
North Atlantic Ocean at the continental shelf and slope sites.

MATERIALS AND METHODS

Study Sites and Acoustic Recordings
Data were collected from two recording sites in the western North
Atlantic Ocean: one located on the continental shelf (hereafter
referred to as “shelf ”), and the other along the continental
slope (“slope”). At the slope site, a High Frequency Acoustic
Recording Package (HARP; Wiggins and Hildebrand, 2007) was
deployed at a depth of 845 m at 41.06 N, 66.35 W, on the outer
United States continental slope near Heezen Canyon, with the
hydrophone approximately 20 m above the seafloor (Figure 1 and
Table 1). The HARP was programmed to record continuously at a
bandwidth rate of 200 kHz from June 11, 2018–May 10, 2019. The
HARP was comprised of two transducers; one high-frequency
stage using an ITC-1042 hydrophone (International Transducer
Corporation), and one low-frequency stage using Benthos AQ-1
transducers1 (see Table 1 for more technical information). For the
purpose of this study, only the low frequency data (<2,000 Hz)
were analyzed to best visualize the calls of baleen whale species
found in the study area. At the shelf site, a Marine Autonomous
Recording Unit (MARU; Clark et al., 2010) was deployed at a
depth of 78.6 m at 40.393 N, 70.217 W near the Nantucket Shoals
area on the United States continental shelf (Figure 1 and Table 1).
The MARU was programmed to record continuously at a 2 kHz
sampling rate from December 21, 2016–February 14, 2018 with a
gap in data due to battery life constraints from July 15 to 17, 2017
(see Table 1 for additional technical information). Recording sites
were selected based on previous analyses of baleen whale acoustic
presence in slope and shelf environments around George’s Bank
and New England waters (e.g., Risch et al., 2014; Davis et al., 2017,
2020; Weiss et al., 2021).

Acoustic Data Processing and Acoustic
Metrics
We performed a stratified random sampling over the complete
dataset from the slope and shelf sites to select the acoustic
files to constitute our training set (n = 695 and n = 389,
respectively). We searched for high quality recordings [i.e., high
signal-to-noise ratio (SNR) for species spectral patterns] through
as many months and days as possible in order to capture as
much temporal, spatial, and species variation in the training
set. All sound files for both locations were clipped to 1 min

1www.benthos.com

in length for the best call resolution based on baleen whale
vocalizations in the study areas. Clipping was performed using
Matlab R2017a (The Mathworks, Inc.).We manually assessed
species presence/absence in the training set through visual and
aural inspection of spectrograms using Raven Pro 2.0 (Cornell
Lab of Ornithology, Ithaca, NY, United States). Spectrogram
settings were chosen and changed to best help identify different
species’ call presence/absence (512pt. FFT for NARW, sei,
minke, and humpback; 4096 FFT for fin and blue, Hamming
window, 50% overlap).

We defined SR as the number of species acoustically present in
a 1-min file, ranging from 0 to 6, and quantified SR for each file
based on visual and aural review of the spectrograms. A species
was marked absent based on a lack of acoustic presence. We
computed 21 different AM (for details on the computed AM see
Supplementary Table 1) for every acoustic file in each training set
over the full bandwidth 0–1,000 Hz. The AMs that were chosen
and the AM parameterization were adapted according to the
target species’ call patterns to optimize results. The AM selected
were based on their mathematical principles, which had the
potential to be the most relevant, and which had already shown
to perform well in other marine, specifically marine mammal,
acoustic contexts. To account for the complexity and variability
in the spectral patterns of the species’ calls, the AEI, ADI, ACI,
BI, and NP metrics (see Supplementary Table 1) were computed
over four other relevant bandwidths: 10–40; 40–100; 100–200;
and 200–900 Hz, for a total of 44 AMs computed per acoustic file.
All AMs were computed using R. We used functions from the R
package seewave (Sueur et al., 2008) to calculate H, th, sh, ACI,
NP, and M, and the R package soundecology (Villanueva-Rivera
et al., 2018) to calculate AEI, ADI, BI, and NDSI.

Random Forest Classification Models
We used random forest classification models (Breiman, 2001)
to discriminate between the acoustic presence/absence of the
different species comprising the acoustic community at each site
and to evaluate the discrimination potential of the AMs. Random
forest models are widely used tools that show high predictive
accuracy and can cope with high-dimensional problems, complex
interactions, and even highly correlated predictor variables.

We used the Boruta algorithm (Kursa and Rudnicki, 2010)
to select relevant AMs to include as predictor variables in
the random forest classification models. The Boruta algorithm
iteratively removes the variables that are statistically less relevant
than their randomly permuted copies (the random copies’
importance can be non-zero only due to random fluctuations).
We used the Boruta function from the Boruta package (Kursa and
Rudnicki, 2010) in R.

We used the randomForest function in the R randomForest
package (Liaw and Wiener, 2002) to develop the random forest
classification models. We ran a hyperparameter grid search for
each species model using the R package ranger (Wright and
Ziegler, 2015) on values for the total number of trees necessary to
stabilize prediction error rates, the number of predictor variables
to randomly sample from at each node, the minimum number of
samples within the terminal nodes and the maximum number of
nodes (both define the degree of model complexity) and finally,
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FIGURE 1 | This map shows the location of the two acoustic recording units in the western North Atlantic Ocean used in this study. At the slope site, a High
Frequency Acoustic Recording Package (HARP) was located along the continental slope edge near Heezen canyon off of Georges Bank (triangle). At the shelf site, a
Marine Autonomous Recording Unit was located near Nantucket Shoals (circle).

TABLE 1 | This table provides details of the two passive acoustic recorders used for this study, one of which was located along the continental slope and another was
located on the shelf.

Recorder Location (latitude,
longitude)

Depth (m) Recording date range Sampling
rate (kHz)

Bit depth
(bit)

Frequency
range (Hz)

Sensitivity (dB
re: 1 µV/µ Pa)

HARP (slope site) 41.062, −66.352 845 June 11, 2018–May 10, 2019 200 16 10–
100,000

−187

MARU (shelf site) 40.393, −70.217 78.6 December 21, 2016–July 15, 2017
and July 17, 2017–February 14, 2018

2 12 10–1,000 −151.2

The acoustic recorder on the former was a High Frequency Acoustic Recording Package (HARP) and the latter was a Marine Autonomous Recording Unit (MARU).

the sizes of training and test data subsets to find the best model
parameterization according to the above mentioned criteria. We
grew 2,001 trees with a node size of 1 and tested between 6
and 16 predictor variables at each split according to the species
model. For each tree constructed in the random forest, ∼ 2/3
(0.66–0.75% of data according to species) of the training set were
sub-sampled with replacement to train the classification model

and ∼ 1/3 was left out as a test subset (i.e., out-of-bag or OOB
cases). The general misclassification rate of the model (general
OOB estimate) is computed as the average across all OOB cases
and trees. We used a conditional permutation scheme (Strobl
et al., 2008) to assess variable importance, in order to account
for correlations that occurred between some of the AMs. We
used the permimp function from the permimp package in R

Frontiers in Marine Science | www.frontiersin.org 4 October 2021 | Volume 8 | Article 749802

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-749802 October 18, 2021 Time: 16:16 # 5

Pegg et al. Acoustic Metrics Baleen Whale Presence

(Debeer and Strobl, 2020) with a 0.80 threshold value. We used
the area under the curve (AUC) to compute the permutation
importance (Janitza et al., 2013).

Model Predictions and Second-Step
Evaluation
To evaluate the performance of the models across a long time
series (12 months from January 1 to December 31, 2017), we
made a case-study of the models developed for the species
recorded at the shelf site. This site was chosen instead of the
slope site due to six species being acoustically present instead of
six, more diverse combinations of species vocalizing at higher SR
levels, and a higher SNR for some species, especially humpback
whales, in the clips. We used the generic predict function in R
to generate predictions of species presence probabilities on the
complete dataset using the trained random forest classification
models. We randomly selected 400 1-min acoustic files from
the complete dataset and annotated species’ presence/absence
using Raven Pro 2.0 as mentioned in section “Acoustic Data
Processing and Acoustic Metric” as an independent test set
to use as second-step cross validation and evaluation of the
species classification models’ performance. To assess the optimal
threshold to generate presence/absence scores from the model
predicted probabilities in order to evaluate model performance
for each species, we used the optimal.thresholds function from
the PresenceAbsence package in R (Freeman and Moisen, 2008).
We used the confusionMatrix function from the caret package
in R (Kuhn, 2020) to conduct the second-step evaluation of
models’ performance. We computed a relative daily proportion
of acoustic presence for every species as the sum of the 1-min
species presence scores per day (obtained by applying the optimal
threshold to the estimated probabilities) divided by the total
number of minutes recorded per day (i.e., 1,440).

We then compared the modeled outputs summarized as
relative daily proportion of acoustic presence with the manually
assessed daily acoustic presence of the different baleen whale
species for the shelf data set, derived using two acoustic detection
software methodologies: LFDCS (Baumgartner and Mussoline,
2011) for NARW (upcall), sei (doublet or triplet down sweeps),
blue (A, B, and AB phrases), fin (20 Hz pulse), and humpback
(song across multiple years and social sounds) whales (according
to Davis et al., 2017, 2020), and an automated pulse train detector
(according to Risch et al., 2014) for minke whales (Figure 2). The
call types listed above for each individual species were the only
call types used when selecting and annotating the 1-min clips
for analysis.

Low-frequency detection and classification system detections
were manually reviewed by trained acoustic analysts to determine
daily presence of each of the baleen whale species. Given the
variability of each species’ vocalizations, the specific methodology
to determine daily acoustic presence varied by species (see Davis
et al., 2017, 2020 for a more complete description). A true
detection was defined as a pitch track that correctly classified
a call or song unit to the species that produced it (Bonnell
et al., 2016). All detections were reviewed by an analyst until
a true detection was found for NARW, sei, humpback, and

blue whales. In contrast, only hours with 29 or more detections
for fin whales were reviewed manually for acoustic presence
due to a logistic regression application revealing 29 to be the
minimum number of detections in an hour to ensure a fin
whale was acoustically present with 90% confidence (Davis et al.,
2020). This was implemented in order to reduce the time of
manually reviewing detections. In addition, the automated pulse
train detector which used a Ripple-Down Rule learner trained
to identify the three main types of minke whale low-frequency
pulse trains implemented by Risch et al. (2014), was applied
to examine selected recordings for the acoustic presence of
North Atlantic minke whales. It is important to note that the
output from the classification model represents the relative daily
proportion of species presence across 1-min clips while in our
manual detection protocol, a day is marked as “present” for the
full 24 h as soon as a single target species call type is observed.
The manual detection protocol represents a minimum acoustic
presence for each species in order to maximize confidence of
acoustic presence. Therefore first, the model resolution presents
information at a much finer scale than the latter approach and
second, the output comparison between both methodologies
concerns the period of the species-specific acoustic activity peak
and its duration but not the magnitude of the daily activity or its
monthly average.

RESULTS

Species Richness of Training Data Set
All six baleen whale species were observed in the shelf training
dataset for the random forest classification models, while only five
target species were detected in the slope training dataset. Minke
whale acoustic presence was only included in the analyses of the
shelf dataset, and not the slope dataset due to the lack of minke
whale vocalizations during the time periods analyzed when other
baleen whale species were vocalizing in the slope dataset. Fin
whales were the most represented species in the slope dataset,
comprising just over 50% of the SR 1 clips. They were also the
species most present in clips with the higher SR levels. NARW
were present in the least number of clips in the slope dataset
(27/695 clips). The shelf dataset had a more even representation
of species in the clips than that of the slope dataset. The 1-
min clips with SR of 0–2 co-occurring species were the most
commonly observed in both training datasets (slope: 639/695
clips; shelf: 338/389 clips). The highest SR level found in the slope
dataset was 3 (55/695 clips), and the highest in the shelf dataset
was 4 (4/389 clips), indicating that most often 2 or fewer species
were acoustically active at any given time and only rarely were
there more than 2 species vocalizing.

Acoustic Metrics and Classification
Models
The random forest classification models trained with a
combination of relevant AM (Supplementary Table 1) showed
high average accuracy values for all species around the slope
and the shelf sites (Tables 2, 3). Overall model accuracy ranged
between 80 and 92% for species around the slope site and
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FIGURE 2 | Spectrograms of the vocalization types used to detect species presence for the (A) blue whale (A/B song), (B) fin whale (20 Hz pulse), (C) humpback
whale (song), (D) minke whale (pulse train), (E) North Atlantic right whale (upcall), and (F) sei whale (downsweep).
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between 82 and 95% for species around the shelf site. The false
omission rate (class 0 error) was low for all species around both
sites (0–12%), indicating that the models had high precision for
predicting true species’ absence (Tables 2, 3). The classification
models trained to discriminate the calls from the species around
the slope site performed best for fin and right whales with false
discovery rates (class 1 error) <0.15 (Table 2). However, model
performance for blue, sei, and humpback whales was low (0.42,
0.54, 0.79, class 1 error respectively; Table 2). The precision of
the classification models was higher in general for the species
recorded around the shelf site, with false discovery rates (class 1
error) ranging from 0.43 (sei whales) to 0.12 (fin whales; Table 3).
While the model’s ability to discriminate between SR levels was
better for the shelf than the slope site (0.07 and 0.29 OOB errors
respectively for SR 0), the model did not perform well at the
higher SR levels for both sites in discriminating between the SR
levels (Supplementary Table 2).

Figure 3 shows the relative importance of the different AM
used in the random forest classification models to discriminate
between the different species presence. The number of AM
that were included in the classification models for species
identification can be found in Tables 2, 3. Results on the
conditional importance of the AMs used to train the classification
models showed a good agreement in general between the AMs
that were found to be most important for the classification of the
different species acoustically present around the shelf and slope
sites (Figure 3). Overall, the most important AMs were AMP,
ACI, and BI (see Supplementary Table 1 for details). However,
the importance of these AMs was highest when computed on
the frequency bands corresponding with the bands in which
the respective species’ call patterns show most of their acoustic
energy (Figure 3). Further, there were also clear differences in
the number of AM that were relatively most important between
slope and shelf sites, with species in the latter being captured by a
wider range of AM.

Second-Step Model Evaluation of on
Shelf Acoustic Recordings
The resulting model was applied to 12 months of near
continuous acoustic recordings on the shelf site to evaluate
its performance. Results on the second-step model evaluation
showed high average accuracy scores for all species models
regardless of the criteria used to determine the optimal
threshold to produce presence/absence scores from the estimated
probabilities. However, the threshold that in general yielded the
best balance between sensitivity and precision for all species
was the threshold that maximized Kappa (Table 4). The Kappa
statistic provides a measure of agreement between the predicted
and observed classes above that expected by chance (Kuhn and
Johnson, 2013). Model performance was very high for fin, minke,
and humpback whales with sensitivity and precision scores >0.70
(minke whale model precision = 0.67). Blue, NARW, and sei
whales’ models showed high average accuracy and specificity but,
in general, low sensitivity and precision (0.30–0.40; Table 4).

We then compared the long-trend output of the classification
model to the results from the manual detection software

approach that we standardly use to evaluate baleen whale
presence in all of our western Atlantic data sets (Figure 4).
The classification model estimation represents the species’
average daily relative presence proportion compared to a
single verification of a species’ acoustic presence per day to
determine daily presence in our manual detection methodology.
Accordingly, the former provides much higher resolution
detection information compared with the latter. The comparison
made therefore is not between the raw proportion of presence
in a given month (since the measures are not comparable) but in
the timing and duration of the relative monthly acoustic presence
peak for each species. The patterns in species presence showed
good correspondence between the two methodologies for most
species and time periods including peaks for blue whales in winter
months, humpback, minke, and sei whales in spring months,
and fin whales in late winter/early spring months (Figure 4).
There were some discrepancies between the results of the model
and manual verification. For example, fin whale proportion of
acoustic occurrence showed higher proportions in the summer
and fall months for the model approach, while fin whale presence
showed zero proportion of acoustic occurrence during those
same months in the detector and manual verification approach
(Figure 4). Although the model did not perform well for blue
and sei whale species when estimating acoustic presence at a 1-
min clip level, when pooled across a day, the model provided a
good approximation to the standard manual detection approach
regarding the species relative presence and high activity periods.

DISCUSSION

This study showed that the shelf and slope sites include habitat
that is utilized by the majority of baleen whale species that
occur in the Northwestern Atlantic Ocean, with six and five
different species detected at each site, respectively. However,
in our training dataset, it was difficult to find more than two
species vocalizing in the same 1-min time periods, resulting in
low overall SR values. Due to the short length of the 1-min clips
and the characteristics of the baleen whale calls around the study
sites, it was not surprising that the SR levels were low in the
clips analyzed. In some cases, different combinations of species’
vocalizations were detected at different times of day, or on nearby
days, indicating that there were more species in the area than
what may be represented by the SR values alone. Nevertheless,
model discrimination for SR levels was poor (Supplementary
Table 2), probably due to the higher intra- than inter-level
acoustic variability, so it was not feasible to directly predict the
number of co-occurring species in the same 1-min time period
across the full datasets.

In this study, our random forest classification models
trained with a combination of relevant AM were successful at
discriminating the presence/absence of the call repertoire of
different baleen whale species at the shelf and slope sites. Overall
model accuracy was high for all species at both sites and in
general, it was primarily driven by the model’s strong ability to
predict the absence of the baleen whale species, meaning that they
were highly successful at detecting time periods when specific
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TABLE 2 | Model results for the slope site.

Species N n AMs OOB error (%) Class 0 error Class 1 error

Blue whale 197 36 17 0.06 0.42

Fin whale 333 39 12.7 0.12 0.12

Humpback whale 57 29 8 0.01 0.79

Right whale 27 33 0.7 0.00 0.15

Sei whale 121 35 10 0.01 0.54

The random forest classification models (one per species) were trained to discriminate between the acoustic activity of five baleen whale species using the training set
consisting of 1-min clips (n = 695). n AM shows the number of predictors (AMs) that were used in the classification model according to the Boruta test results. OOB error
stands for out-of-bag error {OOB error = [false positive (FP) + false negative (FN)/(true positive (TP) + true negative (TN) + FP + FN]; 1-overall accuracy}. Class 0 error
represents the false omission rate [(FN)/(TN) + FN] and Class 1 error represents the false discovery rate [(FP)/(TP) + FP; 1-precision].

TABLE 3 | Model results for the shelf site.

Species N n AMs OOB error (%) Class 0 error Class 1 error

Blue whale 46 24 4 0.00 0.32

Fin whale 135 39 6 0.03 0.12

Humpback whale 112 36 9.7 0.05 0.21

Minke whale 52 37 5 0.01 0.30

Right whale 71 38 11.5 0.05 0.42

Sei whale 93 35 13 0.04 0.43

The random forest classification models (one per species) were trained to discriminate between the six baleen whale species call types using the training set consisting
of 1-min clips (n = 389). n AMs shows the number of predictors (AMs) that were used in the classification model according to the Boruta test results. OOB error stands
for out-of-bag error [OOB error = (FP + FN)/(TP + TN + FP + FN); 1-overall accuracy]. Class 0 error represents the false omission rate [false negative (FN)/true negative
(TN) + FN] and Class 1 error represents the false discovery rate [false positive (FP)/true positive (TP) + FP; 1-precision].

species calls were not present. The false omission rate ranged
from 0 to 5% on the shelf site, and 0 to 12% at the slope site,
depending on species. Understanding when species are likely not
to be acoustically present can be incredibly useful for marine
soundscape planning, such as when trying to plan anthropogenic
activities at times that could minimize acoustic disturbance to
protected species (e.g., Van Opzeeland and Boebel, 2018). Being
able to predict a species acoustic absence using rapid techniques
can facilitate more efficient processing of large datasets.

At the shelf and slope sites, the models were also successful
at predicting presence for a subset of our target species. The
models performed the best for fin whales, predicting their
presence with an 88% precision at both sites. This is similar
performance to that reported for fin whale detectors in other
studies (e.g., Buchan et al., 2019; Fregosi et al., 2020). The
model also performed well for NARW at the slope site (15%
false discovery rate) and humpback whales at the shelf site (21%
false discovery rate). However, the ability to accurately predict
presence decreased for the other species/site combinations, with
false discovery rates ranging from 30 to 79%. In general, the
random forest classification models performed somewhat better
on the shallower shelf site as compared to the deep-water slope
site. This may be due to a combination of differences in ambient
noise backgrounds, propagation influence at the slope site based
on hydrophone depth, as well as overall species occurrence.
While the false discovery rates were lower for the shelf site than
the slope site for blue, humpback, and sei whales, the model had
a higher false discovery rate at the shelf site for NARW than the
slope site. This could be attributed to the quality of signal in
the NARW clips in the slope site even though they were only

acoustically present in around 4% of the slope clips. The low
SR and minimum amount of overlap between target signals may
well have improved our model performance in some instances.
Our North Atlantic sites may be considered less “acoustically
cluttered” compared with tropical waters; we did not have to
contend with issues such as fish chorusing and snapping shrimp
as previous studies did (e.g., Buxton et al., 2018). However,
instead our region is subject to high anthropogenic noise levels
(Rice et al., 2014), which impacted our model performance for
species like humpback whales whose variety of vocalizations
clearly overlap the same frequency ranges.

In our dataset, the metrics that contributed the most to
species classification were those that summarized acoustic activity
(intensity) and complexity in different frequency bands, such as
AMP and ACI. In particular, important contributors to model
performance were the AM computed across the lower frequency
bands corresponding with the bands in which the respective
species’ call patterns show most of their acoustic energy (Table 3).
Furthermore, for specific species/sites combinations, BI, Ht, and
BL (see Supplementary Table 1 for details) also showed high
relative importance suggesting that the acoustic spectral and
temporal heterogeneity, together with the background noise level
were important drivers in the discrimination process between
the species acoustic presence/absence. While it is interesting to
note the relative importance of these AMs within the species-
specific models, in the current study, the AMs are merely an
automated way to parameterize and train the model when
combined all together.

The role of acoustic indices, and AM in general, is
essential to quantify the complexity of the soundscape in
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FIGURE 3 | Conditional variable importance plot showing all AMs (predictors) included to train the random forest classification models and their relative importance
per species. Top panel (A) represents the slope site, bottom panel (B) represents the shelf site.

TABLE 4 | Results on second-step evaluation of classification model performance on 14 months of acoustic data from the shelf site.

Species n Acc (95% CI) Sensitivity Specificity Precision NPV Prevalence

Blue whale 17 0.95 (0.92, 0.97) 0.35 0.97 0.38 0.97 0.04

Fin whale 165 0.80 (0.76, 0.84) 0.73 0.86 0.78 0.82 0.41

Humpback whale 57 0.92 (0.89, 0.95) 0.72 0.96 0.75 0.95 0.14

Minke whale 11 0.98 (0.96, 0.99) 0.73 0.99 0.67 0.99 0.03

Right whale 26 0.90 (0.87, 0.93) 0.38 0.94 0.30 0.96 0.06

Sei whale 33 0.90 (0.87, 0.93) 0.36 0.95 0.40 0.94 0.08

Optimal thresholds to transform species predicted probabilities into presence/absence scores were selected to maximize Kappa. Overall accuracy values (Acc) are
shown with the correspondent 95% confidence interval. Sensitivity (Recall) represents the ratio of correctly predicted presence observations to the total (true) presence
observations in the dataset. Specificity represents the equivalent of the later but for absences. Precision (1-class 1 error) is the ratio of correctly predicted presence
observations to the total predicted presence observations (denotes the accuracy of the predicted presences). NPV stands for negative predictive value (1-class 0 error).
Species predicted prevalence represented their respective prevalence in the test set.

a single or handful of values. However, their success has
been variable, and it seems that a combination of AM
(rather than a single metric) is more effective at predicting
bioacoustic activity (Sueur and Farina, 2015; Mooney et al.,
2020). Drawing from our results, the utility of these metrics

may well reflect and capture the complexity and stereotypy
of individual species call types with NARWs and sei whales
generally producing sporadic bouts of calls, while fin, blue, and
minke whales produce song sequences which are more frequent
and longer in duration (Figure 2; e.g., Stafford et al., 2007;
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FIGURE 4 | Relative daily proportion of acoustic presence (i.e., minutes per day/1,440 total minutes) estimated by the random forest classification models (left) and
monthly proportion of acoustic presence (i.e., number of days present/total recording days in that month) found by manual review of automatic detections (right) for
the species recorded at the shelf site over 12 months (January 1–December 31, 2017, with a gap from July 15 to 17, 2017). Color bars and correspondent error bars
on the left panel (“Model”) show the monthly average (and ± SD) of the acoustic activity proportion predicted per species. The daily proportion of acoustic activity
was computed as the relative proportion of the species presence scores obtained by applying the optimal threshold (Kappa criterium) to the estimated probabilities
(left). Color bars on the right panel (“Manual”) show the number of days with confirmed acoustic presence over the number of total available recording months.

Risch et al., 2014; Cholewiak et al., 2018; Davis et al., 2017, 2020).
In noisy, shallower waters where snapping shrimp choruses
also dominate, the soundscape can be homogenized because
of the wide frequency range, pervasiveness, and intensity of
this characteristic sound. This acoustic context may challenge
the use of AMs to train classification models to discriminate
other concurring calls (e.g., fish). In contrast, acoustic contexts
dominated by whale calls, or even song, as the ones studied
at these sites, generally have a narrower band and less intense
background and therefore, they may provide a promising route
for using AM or an adapted version thereof as was shown in
Parks et al. (2014).

Second-step evaluation of model performance in new data
showed relatively high performance for three species: fin,
humpback, and minke whales (Table 4). For these species, the

model performed well in predicting species presence as well as
absence, similarly to the results of the first stage analysis. Overall
predicted prevalence in the dataset for these three species ranged
from 41% (fin whales) to 3% (minke whales; Table 4). However,
the model performed worse for blue, NARW, and sei whales
when applied to the entire dataset, with low rates of precision
and sensitivity.

The comparison between model and detector outputs was
aimed at understanding how the trained model would perform
across a long time series (12 months of data), and whether it
would provide outcomes that were comparable to the results
obtained from the more time-consuming acoustic detection
software approaches. When we averaged the model predictions
and compared to the average daily presence across each month,
the model predicted clear seasonal patterns of occurrence for all
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species well (Figure 4). In comparison to our standard acoustic
detection software process, the model provided much finer
resolution and increased presence information. It is important
to remember that the model provided information on species
presence at the resolution of 1-min clips, while our standard
acoustic detection approach provided species presence at the
resolution of 24 h (daily). Therefore, although the model
performed poorly when predicting certain species presence at
the 1-min clip level, when aggregated across a day, it predicted
similar patterns of occurrence as our standard acoustic detection
software approach. However, there were time periods where the
model accurately showed a larger proportion of daily acoustic
presence for some species than the detector, like for fin whales
during the summer and fall in 2017. Some of the discrepancies
between the two methodologies could be explained by the
missed detection rates of the detectors and the constrains
of the manual verification process used (see section “Model
Predictions and Second-Step Evaluation”). As mentioned in
section “Model Predictions and Second-Step Evaluation”, the
detector methodologies were aimed at determining species’
minimum acoustic presence. False negative rates for humpback,
blue, fin, and sei whales were found to be 5, 10, 10, and 14%,
respectively (Davis et al., 2020). Davis et al. (2017) found 31%
of days where NARW were acoustically present were missed by
the LFDCS detector. Lastly, the minke whale pulse train detector
was found to have a 27% false negative rate (Risch et al., 2013).
Because of these slight discrepancies, a detector method could be
used in instances where the results aim to be more conservative,
and species presence should be manually verified. In contrast, the
AMs classification model can provide accurate species absence
and presence information at daily-scale resolution with minimal
human verification of the models’ predictions. This demonstrates
that this approach is valuable at this coarser reporting level.

Where the AM methodology really came into its own was both
in the reduction of time needed to process large quantities of data
by reducing the processing time from days to hours. In addition,
the increased detection resolution that the AM model provides
allows for a much more in-depth analyses of the data, allowing
for tidal and diel trends to be evaluated in addition to having
much finer resolution on species presence. The acoustic detector
currently provides a manageable but time consuming and coarse
resolution of information. Further improvements to this model
are likely possible by adding higher resolution clips and more
training data aimed at improving the positive detection accuracy
and decreasing false detections. Also, in areas where the model
and manual detector methods showed differing species presence
proportions, clips could be browsed from those areas to confirm
or deny species presence to further inform the model’s test
training datasets. However, results show that this methodology
has promise to stand as an alternative or complementary analysis
to current methods used for understanding large scale daily
distribution of baleen whale species.

Overall, a relevant combination of AM in the context of
a random forest classification modeling approach provides a
promising methodology for less time consuming and laborious
species detection for baleen whales based on the AM processes
taking half as long as manually reviewing the detectors for these

two sites. In addition, it could equally provide significantly higher
resolution of information than what is currently available. Passive
acoustic monitoring in the marine environment continues to
rapidly expand as a methodology for understanding species
occupancy and distributions to avoid human impacts and
understand changing ocean environments for these species (e.g.,
Van Parijs et al., 2009; Mann, 2012; Rettig et al., 2013; Wall
et al., 2013). With the end user in mind (Mooney et al., 2020)
further development of this type of multi-step evaluation of AM
could provide highly valuable advances in speed and improved
resolution of data extraction.
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